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ABSTRACT 

We computed the flow of four gases (He, N2, CO2, and SF6) through a critical flow venturi (CFV) by 

augmenting traditional computational fluid dynamics (CFD) with a rate equation that accounts for τrelax, a 

species-dependent relaxation time that characterizes the equilibration of the vibrational degrees of freedom 

with the translational and rotational degrees of freedom.  Conventional CFD ( relaxτ = 0) under-predicts the 

flow through small CFVs (throat diameter d = 0.593 mm) by up to 2.3 % for CO2 and by up to 1.2 % for 

SF6.  When we used values of relaxτ  from the acoustics literature, the augmented CFD under-predicted the 

flow for SF6 by only 0.3 %, in the worst case.  The augmented predictions for CO2 were within the scatter 

of previously published experimental data (± 0.1 %).  As expected, both conventional and augmented CFD 

agree with experiments for He and N2.  Thus, augmented CFD enables one to calibrate a small CFV with 

one gas (e.g., N2) and to use these results as a flow standard with other gases (e.g., CO2) for which reliable 

values of relaxτ  and the relaxing heat capacity are available. 

A) INTRODUCTION  

Critical flow ventruis (CFVs), also called critical nozzles, have been used for decades as secondary 

standards for measuring large gas flows because they are passive, extraordinarily stable, and easy to 

use [1, 2].  In an effort to exploit these desirable qualities at the lower flow ranges encountered in 

semiconductor processing (10 to 300 standard
1
 cm

3
 s

−1
), we used computational fluid dynamics (CFD) to 
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 Standard reference conditions are at 293.15 K and 101.325 kPa. 
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predict the flow through a small, well-characterized, CFV (nominal throat diameter d = 0.593 mm
2
).  In 

Figure 1, we compare our CFD results with previously published measurements for four gases [3].  The 

variables used for this comparison are those conventionally used to describe CFVs.  Thus, the ordinate is 

the discharge coefficient id m/mC &&≡ , where m& is actual mass flow and im& is the mass flow calculated 

using an idealized one-dimensional, inviscid model.  The abscissa is the inverse square-root of the 

Reynolds number: oiRe µπ dm4 &= where oµ  is the viscosity evaluated upstream of the CFV at 

stagnation conditions.  As shown in Figure 1, the present CFD model predicts the mass flow through the 

small CFV for all four gases to within ± 0.31 % for flow rates spanning at least a factor of 4 for each gas. 

Previously existing CFD models and analytical predictions [4-11] account for several species-dependent 

effects (virial coefficients and temperature-dependent heat capacity) and for boundary layers and curvature 

of the sonic line.  In order to obtain good agreement with the measurements for CO2 and SF6, we had to 

augment existing equilibrium CFD models to account for relaxτ , the species-dependent relaxation time that 

characterizes the equilibration of the vibrational degrees of freedom with the translational and rotational 

degrees of freedom.  The relaxation time must be compared to transitτ , the average time required for a fluid 

element of fixed mass to move from the CFV inlet to the CFV throat.  For any ISO standardized CFV 

geometry [12] (Figure 2) the approximate transit time is cd10transit ≈τ  where d  is the diameter of the 

throat and c  is the speed of sound in the gas at the CFV throat.  Thus, small CFVs, such as the one 

considered here for use at low flow rates, have short transit times and can encounter larger values of the 

ratio transitrelax ττΓ = .  Conventional CFD and analytical theories for CFVs assume relaxτ = 0.  Such 

theories agree with the present results for N2 and He within their scatter (0.1 %, root mean square); 

however, as shown in the lower panel of Figure 1, conventional theories ( relaxτ = 0) under-predict the flow 

through this small CFV by up to 2.3 % for CO2 and up to 1.2 % for SF6.  The augmented CFD model 

provides better understanding of how gas species effects influence the discharge coefficient for both CO2 

and SF6 in small CFVs. The results help to quantify the level of correction needed when a CFV is 

                                                           
2
The measured value of the throat diameter was adjusted by less than one micron by matching the experimental Cd data to the 

computed results for N2. 
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calibrated using a standard gas (e.g., N2 or Air, Ar, etc. ) where relaxτ = 0, but applied to other gases (e.g., 

CO2 or SF6) where vibrational relaxation effects are prevalent. 

 

 

 

Our CFD model characterizes the vibrational degrees of freedom within each fluid element by its energy 

)( vibvib Tε , where vibT  is the vibrational temperature.  As the gas flows through the CFV, the temperature 

of the external modes, extT , drops quickly while vibT  lags behind for molecules where Γ  is close to or 

greater than unity. (Here, we follow Bhatia [13] who called the translational and rotational degrees of 

Figure 1:  Comparison of experimental calibration data of four gases with 

equilibrium and non-equilibrium CFD data over a Reynolds number range 

from 2,000 to 40,000 
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freedom “external modes.”)  To account for the lag, our CFD model couples the Navier-Stokes equations to 

a local relaxation equation that contains two species-dependent parameters.  One is )( vibvib Tε  which is 

obtained from spectroscopy [13, 14] and the second is relaxτ  which is obtained from ultrasonic absorption 

and dispersion data [15, 16].  The CFD flow field is determined by solving the coupled equations 

simultaneously. 

Our results show that relaxation effects must be considered whenever small CFVs are used for slowly 

relaxing gases over temperatures ranges for which the vibrational states are significantly populated.  Both 

CO2 and SF6 meet these conditions; however, N2 does not because, at ambient temperature, nearly all N2 

molecules are in their lowest vibrational state. 

B) CFV GEOMETRY AND PRINCIPLE OF OPERATION 

CFV Geometry 

Figure 2 shows the contour of an ISO toroidal throat CFV that was used in this study.  It consists of a 

circular arc of radius d2Rc =  that merges smoothly into a conical section with a vertex half-angle of 

o3=θ . 

 

 

Baseline Mass Flow Model 

For any CFV, the ratio of the downstream pressure to upstream pressure is maintained so that the gas 

velocity near the CFV throat reaches sonic velocity. This condition is commonly referred to as choking the 

Figure 2:  Critical nozzle used in this study.  The diameter of the throat was d = 0.593 mm. 
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CFV.  The largest pressure ratio that just chokes the CFV is called the choking pressure ratio, and CFVs 

must be operated at or below this threshold. For choked conditions, a long standing baseline mass flow 

model has been developed that is capable of predicting the actual mass flow to within 10 percent or better, 

depending on Reynolds number. This model is based on the following three assumptions: 1) the flow field 

is one-dimensional, 2) the flow field is inviscid, and 3) the gas behaves ideally and has constant heat 

capacities. Herein, these assumptions are collectively called the baseline CFV assumption.  Several 

engineering texts [17-19] use this assumption to derive a baseline mass flow 
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where oP  is the upstream stagnation pressure,  To  is the upstream stagnation temperature,  4dA
2* π=  

is the CFV throat area,  R  is the gas constant for a given specie (the universal gas constant divided by the 

molecular weight), and i
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where the superscript “i” is added to denote the gas is ideal and VP CC=γ  is the ratio of the constant-

pressure specific heat to the constant-volume specific heat.   

Experimental Calibration 

In CFV applications, none of the three assumptions used to derive the baseline mass flow are perfectly 

satisfied, and consequently the actual CFV mass flow does not equal  im& .  However, the baseline mass 

flow plays a vital role in CFV calibrations, being used as the normalizing parameter in the definition of the 

discharge coefficient  
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where m&  is the experimentally measured mass flow.  Calibration curves typically plot the discharge 

coefficient versus a function of the Reynolds number  



Paper No. FE-03-1077  Johnson 6 

o

i

d

m
R

µπ

 4
   e

&
=  (4) 

where oµ  is the molecular viscosity evaluated at the stagnation conditions.   

The dC  values resulting from experimental calibration curves are most reliable when they are applied 

using the same conditions (i.e., gas species, stagnation conditions, ambient temperature, inlet velocity 

profile, beta ratio, etc.) for which the CFV was calibrated.  This paper focuses on how species effects 

impact the discharge coefficient when the calibration and application gas differ and one or both of these 

gases experiences vibrational relaxation.  It is important to understand this phenomenon because this 

physical mechanism is not captured by the standard Reynolds number parameterization.  In a similar 

manner, species effects attributed to real gas behavior (i.e., virial effects) also result in uncoupling between 

the discharge coefficient and Reynolds number.  While the physical mechanisms differ, we introduce linear 

CFV theory and use it to show that the methodology used to account for real gas behavior can also be 

applied to correct for vibrational relaxation phenomenon. 

In CFV flows, real gas behavior is taken into account by using the real gas critical flow function, r
sC , in 

the place of the ideal critical flow function, i
sC , in Equation (3).  When real gas behavior is accounted for 

in this way, the corresponding discharge coefficient depends predominately on Reynolds number
3
.  In a 

similar manner, we introduce an effective critical flow function, eff
sC , to correct for vibrational relaxation 

effects.  The effectiveness of this correction parameter, like the correction for real gas behavior, depends on 

vibrational relaxation phenomena being uncoupled from the other higher order effects (i.e., boundary layer 

development, the shape of the sonic line, and virial effects). Higher order CFV models, which correct the 

baseline mass flow model, can be used to justify the use of this correction factor.  

Higher Order CFV Models 

Higher order CFV models improve upon the baseline mass flow model by eliminating the three 

assumptions used to derive im& .  These higher order models are based on solutions of the Navier-Stokes 
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 Even after correcting for real gas behavior the discharge coefficient has a weak dependence on γ  that diminishes with increasing 

Reynolds number.  
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equations that govern the fluid dynamics of conventional CFV flows.  Because of the complexity of the 

Navier-Stokes equations, no analytical solutions have been found when all three of the baseline CFV 

assumptions are eliminated simultaneously.  Instead, researchers have found three different solutions by 

removing only one of the three baseline CFV assumptions while enforcing the other two.  These three 

solutions include 1) a solution to account for the boundary layer development along the CFV wall [6–8], 

2) an inviscid axisymmetric solution to account for the curvature of the sonic line at the CFV throat [4], and 

3) a solution to account for real gas behavior [20-24].  We briefly discuss each of these three solutions. 

In the late 1960’s and early 1970’s both Tang [6, 7] and Geropp [8] independently developed models 

predicting how the discharge coefficient is affected by boundary layer development along the CFV wall.  

The viscous discharge coefficient developed by these researchers 

( )Ωγ ,Re,fC 1d1
=  (5) 

is denoted by the subscript “1”, and is a function of the Reynolds number, the specific heat ratio, and the 

CFV geometry which is accounted for via the curvature parameter crd 2=Ω  where cr  is the throat radius 

of curvature.  The second model, developed by Hall in 1962, predicts the effects of sonic line curvature on 

the discharge coefficient.  Hall eliminated the one-dimensional assumption by considering the flow to be 

axisymmetric, but he retained the assumptions that the fluid behaves as perfect gas and the flow is inviscid.  

The axisysmmetric inviscid discharge coefficient  

( )Ωγ ,fC 2d2
=  (6) 

is denoted by the subscript “2”, and is a function of the specific heat ratio and the curvature parameter.  The 

third model was developed by Johnson [20-24] who included real gas behavior, but assumed that the flow 

was inviscid and one-dimensional.  This solution requires an accurate thermodynamic database and is 

typically implemented numerically as described in references [20-24].  For convenience, Johnson expressed 

the numerically calculated mass flow in the same format as the baseline model 
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and lumped all of the real gas effects into the parameter r
sC , which replaces the ideal critical flow function.  

The real gas discharge coefficient is denoted by the subscript “3” and defined as the ratio of 3m&  and the 

baseline mass flow 

i
s

r
s3

d3
C

C

m

m
C

i

=≡
&

&
 (8) 

but by Equations 1 and 7  is also equal to the ratio of the real gas critical flow function to the ideal critical 

flow function. The real gas critical flow function, which is often called the Johnson coefficient, is generally 

either tabulated as function of oP  and oT  or given as a surface fit of these parameters for various gas 

species. 

Linear CFV Theory 

For simplicity, in this paper, the three CFV models are referred to as models 1, 2, and 3 respectively.  

Linear CFV theory is used to combine the individual results of these three models into a single model 

capable of predicting the discharge coefficient for a general CFV flow where none of the baseline CFV 

assumptions apply.  The results of the linear theory [11] show that to second order accuracy the discharge 

coefficient equals 

321 dddd CCCC =  (9) 

the product of the dC ’s from models 1, 2 and 3 respectively.  This expression clearly shows how the 

discharge coefficient depends on real gas behavior via 
3dC .  This dependence can be eliminated by 

dividing Equation 9 by 
3dC , and modifying the discharge coefficient definition to be  

213 dddd CCCCC
'
d =≡ . (10) 

Based on the functionality of 
1dC  and 

2dC  given in Equations 5 and 6, the modified discharge coefficient 

is completely free of virial effects, being a function of Re , γ , and Ω .  Physically, '
dC  is made 

independent of real gas behavior by using 3m&  as the normalizing parameter  
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which is equivalent to using the real gas critical flow function in place of the ideal critical flow function. 

Mathematically, Equation 11 is derived by substituting Equation 3 and 8 into Equation 10. 

The definition of the discharge coefficient given in Equation 11 is preferred over the definition in 

Equation 3 because the real gas behavior in Equation 3 has the undesired quality of possibly permitting the 

discharge coefficient to be greater than unity. That is, depending on the gas and CFV operating conditions, 

3dC  could either be greater than or less than unity.  In cases where 1
3d >C , it could cause the discharge 

coefficient in Equation 3 to be greater than unity.  On the other hand, the definition in Equation 11 is only 

dependent on boundary layer effects and curvature of the sonic line as shown in Equation 10.  Both of these 

effects cause the discharge coefficient to be less than unity.  The boundary layer introduces a region of fluid 

where both the density and velocity are reduced relative to the core flow. The density is lower because of 

the higher temperatures in the boundary layer attributed to viscous heating as the flow stagnates at the CFV 

wall, and the fluid velocity is lower due to the no-slip condition imposed by the wall.  In the axisymmetric 

core flow, the curvature of the sonic line stipulates that the Mach number distribution across the CFV throat 

cross section is not uniformly equal to unity, but has values both below and above this value. Since 

compressible flow theory requires that the maximum mass flux coincide with a unity mach number [17], 

the predicted mass flow will be lower than im& . 

C) METHODOLOGY 

In this section, we present the Navier-Stokes equations that are solved in a conventional equilibrium CFD 

analysis [9].  We then introduce the extensions required to account for molecular relaxation and we 

conclude with a description of the numerical algorithms that we used. 

Conventional CFD Equations 

For Reynolds numbers below 10
6
, the axisymmetric, steady, compressible flow in a CFV is governed by 

the laminar Navier-Stokes equations [9].  The large favorable pressure gradient in the converging section of 

the CFV is believed to relaminarize what would otherwise be a turbulent flow [25]. Evidence that the flow 
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is laminar is observed in myriads of calibration data where as predicted by laminar flow theory, the 

discharge coefficient scales linearly with the inverse square-root of the Reynolds number (e.g., Figure 1).  

In CFD, the four scalar conservation equations, including continuity, axial and radial momentum, and 

energy that constitute the axisymmetric Navier-Stokes equations, are often combined into a single vector 

equation as explained in references [26, 27].  In the present numerical investigation the vector form of the 

Navier-Stokes equations is expressed as 

)( v
v QH

r

F

x

E

t

Q
ζ+=

∂

∂
+

∂

∂
+

∂

∂
ϒ  (12) 

where the time derivative is retained to facilitate a time marching numerical procedure to the desired steady 

state solution
4
.  This vector representation of the Navier-Stokes equations is developed by grouping the 

appropriate variables from the four scalar conservation equations. In particular, those variables having like 

derivative operators are combined into vectors.  For example, the time derivative vector, 

T
r,xc ] ,[ eu,uQ ρρρ= , consist of the temporal terms from continuity, axial and radial momentum, and 

energy equations where )](21[ 2
r

2
x uue ++= ερ  is the sum of the internal and kinetic energy per unit 

volume. In Equation 12 the time derivative is multiplied by the Jacobian matrix, vc QQ ∂∂=ϒ , so that via 

the chain rule of vector calculus [28], T
r,xc ] ,[ eu,uQ ρρρ= , is replaced by T

r,xv ] ,[ Tu,uPQ = .  This 

transformation to the dependent vector, vQ , conveniently allows thermodynamic properties to be evaluated 

explicitly as a function of temperature and pressure in the numerical procedure. 

The remaining vectors, E  and F , on the left hand side of Equation 3 are determined in a manner 

analogously to cQ .  These vectors, commonly called the inviscid flux vectors, are defined as  
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4
The time marching approach differs from commonly used iterative approaches which omit the time derivative term when applied to 

steady state problems. 
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and account for the convective terms in the mass, momentum, and energy equations respectively. On the 

right hand side of Equation 12, the viscous operator, ζ , is defined by 
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where the viscous matrices, xxR , and xrR  are given by 
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with rxR , and rrR  having analogous forms. Finally, the vector H  contains the axisymmetric source terms 

as given in reference [27]. 

Thermodynamic and Non-Equilibrium Considerations 

We follow conventional CFD for dilute gases by computing the density from the equation of state, 

)]1([ ρρ BTRP += , where the second virial coefficient )(TB  accounts for real gas behavior.  Data for 

the second virial coefficient and its temperature derivatives were obtained from references [29, 30].  We 

used the transport property data as a function temperature (at 101.325=P  kPa) from references [31, 32].  

In conventional CFD, the equilibrium internal energy ),(eq Tρε  is calculated from a reference state by 

integrating the ideal-gas constant-volume specific heat 
iVC  and subtracting a correction term to account 

for real gas effects 

dT

dB
TRdTT

T

T
C

2eq

ref iV),( ρρε −= ∫  (16) 

This formula for ),(eq Tρε  is unsatisfactory for the CFV in Figure 2 for certain gases.  For this CFV, 

s20transit µτ ≈ .  Vibrational relaxation times range from s0.0001µ  to s10 µ  depending on gas species, 

temperature, and density.  Thus, the conventional CFD assumption 0transitrelax == ττΓ  is a poor 

approximation for gases with slowly relaxing vibrational modes, especially near the throat of the CFV 

where the acceleration of the gas is largest.  The increase in kinetic energy near the CFV throat is balanced 
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by a decrease in the internal energy of the translational and rotational modes.  This reduces the temperature 

extT  that characterizes these modes.  Because the vibrational modes relax slowly, the temperature 

characterizing them, vibT , is significantly higher than extT .  Consequently, the value of internal energy is 

not accurately predicted by Equation 16. 

 

To accurately predict the internal energy when extvib TT ≠ , we sum the relevant molecular components 

including contributions from translational, rotational, and vibrational modes
5
 

)(),(),,( vibvibextextextvib TTTT ερερε +≡  (17) 

The second term, )( vibvib Tε , accounts for the vibrational modes.  We assume that the vibrational modes 

are always in internal equilibrium with each other and we compute )( vibvib Tε  by summing the 

contribution of each vibrational mode 

( )∑
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1exp
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vibn

nn
vibvib

θ

θ
ε  (18) 

where ng  is the degeneracy for the thn  vibrational mode, nθ  is the characteristic vibrational temperature 

for the thn  mode, and N  is the number of active vibrational modes [13, 14].  The first term in 

Equation 17, ),(ext extTρε , is called the external molecular energy, which consist of the both the 

translational and rotational molecular components. Both of these components are taken to be fully 

equilibrated so that extT  equals the thermodynamic temperature T .  The external molecular energy can be 

defined by subtracting the equilibrium vibrational energy from the equilibrium internal energy 

)(),(),( vib
eq

ext extextext TTT ερερε −= . (19) 

In this way ),(ext extTρε  consist only of the translational and rotational components, yet retain real gas 

behavior that traditional ideal gas models of the translational and rotational components omit. 

The exchange of energy between vibrational modes and the combined translational and rotational modes 

was modeled using the vibrational rate equation [13] 
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relax

vibvibextvibvibvib )()(

D
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τ

εεε TT

t
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=  (20) 

where DtD  is the time derivative following a fluid element of fixed mass.  Bhatia developed this equation 

for diatomic molecules having only a single vibrational degree of freedom and therefore only one 

relaxation time [13].  However, Equation 20 works well for polyatomic molecules at temperatures low 

enough so that only the lowest vibrational degree of freedom is active (e.g., CO2 near ambient temperature). 

Often Equation 20 is used to model relaxation in sound and shock propagation through polyatomic gases, 

such as SF6, where the highest vibrational modes relax quickly so that the entire heat capacity relaxes at a 

single relaxation time.  However, for certain polyatomic gases (e.g., C2H6) more than one relaxation time is 

needed as discussed by Lambert [33]. 

For steady flow along a streamline the vibrational rate equation is given by 

)()(
)(

vibvibextvib
vibvib TT

dz

Td
εε

ε
Γ −=  (21) 

where transitrelax ττΓ =  is ratio of the local relaxation time to the local flow transit time, and Lsz =  is 

the normalized distance along a streamline.  Here, uL
r

/transit =τ  is the time that it takes for a fluid 

particle to move a distance L along a streamline, and u
r

is the magnitude of average velocity over that 

distance.  The relaxation time changes with the local thermodynamic conditions according to the 

phenomenological Landau and Teller relation [34] 

[ ]
P

TKK ext
3/1

21
relax

)/(exp
=τ  (22) 

where the constants 1K  and 2K were obtained by fitting ultrasonic relaxation data [15, 16]. 

Numerical Solution 

The vibrational rate equation and the Navier-Stokes equations must be solved as a coupled system of 

equations. In this work these equations are solved by globally iterating between the Navier-Stokes 

equations and the vibrational rate equation until both are simultaneously satisfied. The iterative procedure 

begins by solving the Navier-Stokes equations with a guessed value of the molecular vibrational energy, 

                                                                                                                                                                             
5
 The contribution of the electronic energy is negligible over the temperature range of interest. 
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)( vibvib Tε . From the latest solution of the Navier-Stokes, the input parameters, transitrelax ττΓ =  and 

)( extvib Tε , are determined for the vibrational rate equation. Next, the vibrational rate equation is integrated 

along streamlines to determine the updated vibrational energy, )( vibvib Tε , which is used to determine the 

modified internal energy, ),,( extvib TTρε , in the next iteration of the Navier-Stokes equations.  

Consequently, the Navier-Stokes solution and the vibrational rate solution are co-dependent. 

Numerical Solution of the Navier-Stokes Equations 

The Navier-Stokes equations are solved in a conventional body-fitted coordinate system [35] with a 

physical domain equivalent to the CFV geometry shown in Figure 2.  Grid independent solutions are 

obtained using a mesh with 201 axial grid points and 101 radial grid points. The axial grid points are 

uniformly spaced while the radial grid points are spaced exponentially with a higher grid density near the 

CFV wall to resolve the boundary layer. 

An alternating-direction implicit (ADI) numerical algorithm [26, 27] is used for integrating the Navier-

Stokes equations.  Time advancement is obtained using first-order, backward finite differences.  Both 

inviscid and viscous time-derivative preconditioning [36-38] are employed for accelerated convergence 

rates over a wide range of Mach numbers and Reynolds numbers.  Spatial discretization is accomplished 

using third order up-winded flux differences for the convective terms and central differences for the 

diffusive terms. The resulting numerical scheme consists of two tridiagonal matrices that are inverted at 

each time step using a block version of the Thomas algorithm [26, 27]. 

In these computations boundary conditions are specified at the CFV inlet, at the CFV exit, along the CFV 

wall, and on the centerline. At the inlet, the stagnation pressure, stagnation temperature, and flow angle are 

specified. Characteristic boundary conditions [39] are specified at the supersonic CFV exit. On the CFV 

centerline, symmetry boundary conditions are used.  The CFV wall is taken to be adiabatic with a zero 

normal pressure gradient, and a no-slip velocity boundary condition.  

Numerical Solution of the Vibrational Rate Equation 

In contrast to the Navier-Stokes equations, which are expressed in an Eulerian sense, the vibrational rate 

equation is expressed in a Lagrangian sense. Specifically, the vibrational rate equation describes the rate of 
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relaxation of the vibrational modes of a gas particle of fixed identity moving through the flow field. The 

Lagrangian paths of particles of fixed identity correspond to streamlines in the flow field.  The trajectories 

of these streamlines must be estimated from the Navier-Stokes solution before the vibrational rate equation 

can be solved.  In the coupling procedure between the two equation sets, the streamlines in the flow field 

are computed after each time step using the most recent approximation to the Navier-Stokes solution. The 

vibrational rate equation is then solved on each streamline by a space-marching procedure that integrates 

between consecutive points on a streamline.   

The space-marching procedure begins at the CFV inlet where the vibrational energy on each streamline is 

equal to its equilibrium value.  To find the value of the vibrational energy, )( vibvib Tε , at the next adjacent 

grid point along the stream line, the vibrational rate equation is analytically integrated using variation of 

parameters [40]. In turn, this value of )( vibvib Tε  serves as an initial condition for the next point, and so on, 

until the complete streamline has been updated.  This process is then repeated for each streamline in the 

flow field.  

D) RESULTS 

Validation of CFD Model 

The CFD methodology followed the procedure used for the experimental calibration, where the mass flow 

was controlled by varying the stagnation pressures in the range 50 kPa < Po < 200 kPa while maintaining 

the stagnation temperature at 298.15 K.  For these operating conditions, the corresponding Reynolds 

number varied from 1,000 to 40,000 for the small throat ISO standardized CFV.  The CFD results were 

verified by comparisons with experimental data for four gases including He, N2, SF6 and CO2.   

 

The experimental data shown in Figure 1 was obtained by Japan’s national flow standard, which measures 

flow using a gravimetric timed-collection technique with an uncertainty of 0.1 % [3].  As shown in 

Figure 1, the non-equilibrium CFD model predicted the discharge coefficient to better than 0.3 % for all of 

the gases over the entire Reynolds number range.  In agreement with experimental results, the non-

equilibrium CFD model predicted larger dC  values for SF6 and CO2 − gases affected by relaxation.  As 
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expected, the non-equilibrium CFD model correctly predicted dC  for He and N2, gases that are not 

influenced by vibrational non-equilibrium. 

Increase in Cd due to Vibrational-Non Equilibrium Flow 

When slowly relaxing gases are used in small CFVs, the measured mass flow exceeds the predicted value 

given by models that assume relaxτ = 0.  Indeed, the discharge coefficient as defined in Equation 3 or 11 

may even be greater than unity.  To understand this phenomenon, it is helpful to consider the limiting cases 

for the ratio transitrelax ττ=Γ .  The limit 0→Γ  is the case of equilibrium flow; and the limit ∞→Γ  is 

“frozen” flow in which energy in vibrational modes remains constant.  In both limiting cases, the gas 

dynamic equations are uncoupled from the vibrational rate equation. 

In the limit of frozen flow, relaxation does not occur, or, equivalently )()( ovibvibvib TT εε = = constant 

throughout the flow field.  Because )( ovib Tε  is constant, the frozen flow heat capacity of the vibrational 

degrees of freedom are zero (
vibVC = 0).  Consequently, the specific heat ratio for frozen flow, frγ , is 

larger than the equilibrium value, 
eqγ .  The ideal gas model can be used to demonstrate this fact.  For an 

ideal gas, the specific heat ratio is expressible in terms of the translational, rotational, and vibrational heat 

capacities [18]  

vibrottrans VVV

ideal 1
CCC

R

++
+=γ . (23) 

where frγ  is calculated by setting 0C =
vibV . For diatomic or polyatomic gases, having a least one active 

vibrational mode, 0
vibV >C  so that eqfr γγ > .  

The increased value of the specific heat ratio in the case of frozen flow results in a higher sound speed in 

the gas than would exist for equilibrium flow.  In addition, as the gas expands and accelerates through the 

CFV it cools to a lower temperature in the case of frozen flow than it would for equilibrium flow. This 

lower temperature, subsequently results in a higher density.  Both the higher speed of sound and the higher 

density, in the case of frozen flow, increase the mass flow through the CFV as shown by combining 

Equations 1 and 2 using the larger frozen flow specific heat ratio in place of normal value of γ .  Finally, in 
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the intermediate case of vibrational relaxation, previous CFD results have shown that the mass flow is 

increased above the equilibrium value, but is less than the frozen flow value [10].   

When vibrational relaxation is present, the discharge coefficient as defined by either Equation 3 or 11 is 

higher than would be predicted by conventional equilibrium models.  The larger discharge coefficient 

results because the normalizing parameter im&  or 3m&  does not account increased mass flow attributed to 

vibratrional relaxation.  Moreover, these definitions allow values of the discharge coefficient that are 

greater than unity [11].  To avoid this nonphysical situation
6
, the discharge coefficient should be defined 

using a normalizing parameter that accounts for vibrational relaxation effects.  

Generalizing the Critical Flow Function to account for vibrational relaxation 

Vibrational relaxation can be accounted for by generalizing the critical flow function, which itself is a 

generalization of the discharge coefficient.  Based on linear CFV theory it can be shown that an effective 

critical flow function can be defined as 














≡

eq
d

vib
dr

s
eff
s

C

C
CC  (24) 

where vib
dC is the discharge coefficient computed with the present vibrational relaxation flow model, and 

eq
dC is the discharge coefficient computed with the equilibrium flow model. 

 

 

 

 

 

 

 

 

                                                           

6
 Greater than unity 

d
C  values are sometimes caused by inaccurate values of the CFV throat diameter. This is especially true for 

small sized CFVs where the throat diameter is more difficult to measure.  
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Figure 3:  Effective critical flow function versus reference value of ΓΓΓΓ* evaluated at the nozzle throat for CO2 

(left) and SF6 (right). 
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Figure 3 shows the effective critical flow function for both CO2 and for SF6 gases as a function of 

***
transitrelaxoo ),( ττΓ =PT  where *

relax
τ  is evaluated at the throat conditions using Equation 22 and 

**

transit
cd=τ  is the time required for a gas particle to travel one CFV throat diameter at the speed of 

sound, 
*

TRc* γ= .  The effective critical flow function defined in this way is valid for an ISO standard 

CFV geometry for To near room temperature.  For a given gas, eff
sC  depends not only on Γ∗

, but also on 

)1(/)( freqfr
vvib −−= γγγCC , the ratio of the vibrational specific heat to the total constant-volume 

specific heat.  This ratio, which gives an indication of the number of active vibrational modes, is strongly 

dependent on temperature so that Figure 3 is only valid for To near room temperature.  

The effective critical flow function defines an effective specific heat ratio according to the relationship 
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For both gases CO2 and for SF6 the effective specific heat ratio lies between the equilibrium and frozen 

flow limit, and can be used to assess the degree of vibrational relaxation.   

By using eff
sC in the expression for the ideal theoretical mass flow given in Equation 1, the generalized 

discharge coefficient accounts for vibrational relaxation.  The resulting 
d

C  curves for CO2 and SF6 will 

then agree with analytical 
d

C  predictions, having 
d

C  values that are less than unity and that scale with the 

Reynolds number and the specific heat ratio. 

CONCLUSIONS 

A model for flow through CFVs that incorporates the influence of the relaxation time of vibrational degrees 

of freedom has been presented. The model agrees with experimental measurements of the discharge 

coefficient for four gas species (including CO2 and SF6) within 0.31% whereas prior models differed from 



Paper No. FE-03-1077  Johnson 19 

experiments by as much as 2.3%. The new model couples non-equilibrium thermodynamics with the 

equations of flow. The pertinent quantities are the energy of vibrational modes and the ratio of the 

vibrational relaxation time to the transit time for the gas to move from the CFV entrance to its throat. The 

non-equilibrium phenomena causes an increase in mass flow through the CFV that can be explained by the 

limiting cases of “frozen” and equilibrium flow.  Linear CFV theory is introduced and used to define the 

appropriate form of the effective critical flow function necessary to cancel the effects of vibrational 

relaxation.  The effective values of the specific heat ratio and the critical flow function, presented herein, 

allow a user to use calibration data performed with N2 to calculate the flow of CO2 or SF6 through a CFV 

without utilizing the computational model.  
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